The Acute Physiological, Physical and Perceptual Responses to Intermittent Hypoxic Resistance Training

A thesis submitted for the degree Doctor of Philosophy August, 2015

Brendan Richard Scott BESS (Hons)

Faculty of Science and Information Technology School of Environmental and Life Sciences University of Newcastle AUSTRALIA

Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository^{**}, subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

Brendan Richard Scott (BESS Hons)

21 / 08 / 2015 Date Signed

Acknowledgement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Brendan Richard Scott (BESS Hons)

21 / 08 / 2015

Date Signed

We, Ben Dascombe, Katie Slattery and Dean Sculley, attest that the research completed within this thesis by the candidate Brendan Scott, was completed in collaboration with the following organisation:

New South Wales Institute of Sport, Sydney

Supervisor: Ben Dascombe (PhD)

21 / 08 / 2015 Date Signed

Supervisor: Katie Slattery (PhD)

21 / 08 / 2015 Date Signed

21 / 08 / 2015 Date Signed

Supervisor: Dean Sculley (PhD)

Acknowledgement of **Authorship**

I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

Brendan Richard Scott (BESS Hons)

We, Ben Dascombe, Katie Slattery and Dean Sculley, attest that Research Higher Degree candidate Brendan Scott was a contributor to the conception, design, writing and revision of the previously mentioned publications.

Supervisor: Ben Dascombe (PhD)

Supervisor: Katie Slattery (PhD)

21 / 08 / 2015

Date Signed

Supervisor: Dean Sculley (PhD)

21 / 08 / 2015

Date Signed

Date Signed

21 / 08 / 2015

21 / 08 / 2015 Date Signed

Acknowledgements

Firstly, I would like to extend a massive thanks to my primary supervisor Associate Professor Ben Dascombe. Your assistance throughout the process of research conceptualisation and design, as well as data collection and analyses has been invaluable, and has directly contributed to the quality of this work. Your personal work ethic has instilled in me the desire to push toward my own goals, particularly during long days of data collection when I often wondered if my research would ever truly be finished! Most importantly though, I have enjoyed building a professional and personal friendship with you, and some of my greatest memories from this whole PhD experience involve sharing a few quiet beers with you to unwind after a week of work. Thanks for all you have done for me over these past few years.

Many thanks must also go to my co-supervisors, Dr Katie Slattery and Dr Dean Sculley. Katie, your knowledge regarding the implementation of research for real world athletes has been invaluable in ensuring that my research has far reaching practical applications. Dean, your assistance regarding hypoxic physiology was extremely helpful, particularly during the beginning of my research when, with Ben in India on sabbatical, I would have otherwise been flying solo. I would also like to thank Dr Jeremy Loenneke for his valuable advice regarding blood flow restriction strategies for muscular development. It has been great to collaborate with an expert in the field, and I look forward to continuing this in the future.

IV

I would also like to thank the participants who volunteered to give up their time (and often their blood) for my research. Thank you for often putting your own training on hold so that I could examine well-trained individuals. Also, I would like to thank my research assistants throughout the various studies in this thesis; Nathan Elsworthy, Jace Delaney, Scott Smith, Jacob Hodson, Sam Fever, Cat Lockhart and Aden Kittel. You all provided vital support during those times when my own two hands were not enough to manage the numerous simultaneous tasks I needed to complete during experimental trials.

Enormous thanks must also go to all of those I have worked with in the Ourimbah Post Grad Room over these past few yeas. If I ever needed a break from the keyboard, there was always someone up a kick of the footy or a laugh. Going through this whole postgraduate experience with you all has certainly made my time far more enjoyable.

Finally, I have to acknowledge the support of my amazing parents, Fiona and Richard, and my siblings Chris and Kirstie. Also, a very special thanks to my grandfather Ken, who always encouraged me to study and supported me financially throughout my time as a student. I'd be in a lot of debt now if it wasn't for you! To my extended support network of family and friends, the encouragement you all gave me during stressful and busy times helped me stay on track these past few years. Thank you all for celebrating with me when things were going well, and for supporting me through the times when they were not.

V

List of Publications Arising From This Thesis

Peer-reviewed articles:

Scott, B. R., Loenneke, J. P., Slattery, K. M., & Dascombe, B. J. (In Press). Blood flow restricted exercise for athletes: a review of available evidence. *Journal of Science and Medicine in Sport,* DIO: 10.1016/j.jsams.2015.04.014

Scott, B. R., Loenneke, J. P., Slattery, K. M., & Dascombe, B. J. (2015). Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. *Sports Medicine*, 45 (3), 313-325.

Scott, B. R., Slattery, K. M., & Dascombe, B. J. (2015). Intermittent hypoxic resistance training: is metabolic stress the key moderator? *Medical Hypotheses*, 84, 145-149.

Scott, B. R., Slattery, K. M., Sculley, D. V., Hodson, J. A., & Dascombe, B. J. (2015). Physical performance during high-intensity resistance exercise in normoxic and hypoxic conditions. *Journal of Strength and Conditioning Research*, 29(3), 807-815.

Scott, B. R., Slattery, K. M., & Dascombe, B. J. (2014). Intermittent hypoxic resistance training: does it provide added benefit? *Frontiers in Physiology*, 5, 397.

VI

Scott, B. R., Slattery, K. M., Sculley, D. V., & Dascombe, B. J. (2014). Hypoxia and resistance exercise: a comparison of localized and systemic methods. *Sports Medicine*, 44(8), 1037-1054.

Scott, B. R. (2014). Using blood flow restriction strategies to manage training stress for athletes. *Journal of Australian Strength and Conditioning*, 22(6), 84-90.

Scott, B. R., Dascombe, B. J., Delaney, J. A., Elsworthy, N., Lockie, R. G., Sculley, D. V., & Slattery, K. M. (2014). The validity and reliability of a customized rigid supportive harness during Smith Machine back squat exercise. *Journal of Strength and Conditioning Research*, 28(3), 636-642.

Scott, B. R., Slattery, K. M., Sculley, D. V., Lockie, R. G., & Dascombe, B. J. (2014). Reliability of telemetric electromyography and near-infrared spectroscopy during high-intensity resistance exercise. *Journal of Electromyography and Kinesiology*, 24(5), 722-730.

Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (Under Review). Training monitoring for resistance exercise: theory and applications. *Sports Medicine.*

Scott, B. R., Slattery, K. M., Sculley, D. V., Smith, S. M., & Dascombe, B. J. (Under Review). Systemic hypoxia does not enhance acute responses to high-load resistance exercise. *Scandinavian Journal of Medicine and Science in Sports*

Conference Proceedings:

Scott B. R., Slattery K. M. and Dascombe B. J. (2014) Metabolic and neuromuscular responses to high-load intermittent hypoxic resistance training. *ASCA International Conference on Applied Strength and Conditioning.* Melbourne, Australia.

• Winner of the ASCA Student Poster Award

Scott, B. R., Slattery, K. M., Taylor, L., & Dascombe, B. (2014). Physical performance and perception of effort, fatigue and soreness during high-intensity resistance exercise in hypoxia. *6th Exercise & Sports Science Australia Conference & Sports Dietitians Australia Update: Research to Practice.* Adelaide, Australia.

Finalist for the University of Western Australia Poster Award

Scott, B. R., Delaney, J. A., Elsworthy, N., & Dascombe, B. (2013). The reliability of a linear position transducer to quantify measures of force and power during resistance exercise. *Australian Conference of Science and Medicine in Sport*. Phuket, Thailand.

VIII

Table of Contents

STATEMENT OF ORIGINALITY	I
ACKNOWLEDGEMENT OF COLLABORATION	II
ACKNOWLEDGEMENT OF AUTHORSHIP	111
ACKNOWLEDGEMENTS	IV
LIST OF PUBLICATIONS ARISING FROM THIS THESIS	VI
TABLE OF CONTENTS	IX
LIST OF FIGURES	XIII
LIST OF TABLES	XVI
LIST OF ABBREVIATIONS	XVII
ABSTRACT	XXI

CHAPTER 1

Introduction	1
Background Information	
Statement of the Problem	6
Purpose of the Thesis	7
Significance of the Study	
Limitations and Assumptions	
Delimitations	10

CHAPTER 2

Review of the Literature	. 12
Abstract	. 13
Introduction	. 14
Resistance Exercise with Blood Flow Restriction	. 15
Adaptive and Perceptual Responses to Blood Flow Restriction	
Training	. 16
Potential Mechanisms of Blood Flow Restriction for Hypertrophy	
and Strength	. 20
Practical Applications and Limitations of Blood Flow Restriction	. 32
Resistance Exercise with Systemic Hypoxia	. 35
Adaptive and Perceptual Responses to Intermittent Hypoxic	
Resistance Training	. 43
Potential Mechanisms of Intermittent Hypoxic Resistance Training	
for Hypertrophy and Strength	. 47
Differences Between Blood Flow Restriction and Intermittent Hypoxic	
Resistance Training Methods	. 54
Conclusions	. 56

CHAPTER 3

Study 1	58
Reliability of Telemetric Electromyography and Near-Infrared	
Spectroscopy during High-Load Resistance Exercise	58
Abstract	59
Introduction	60
Methods	63
Results	72
Discussion	77
Conclusions	82
Practical Applications	83

CHAPTER 4

Study 2	84
Physical Performance during High-load Resistance Exercise	
Normoxic and Hypoxic Conditions	84
Abstract	85
Introduction	86
Methods	90
Results	94
Discussion	101
Conclusions	105
Practical Applications	106

CHAPTER 5

Study 3	107
Systemic Hypoxia does not Enhance Acute Responses	
Load Resistance Exercise	107
Abstract	108
Introduction	109
Methods	111
Results	116
Discussion	122
Conclusions	126
Practical Applications	127

CHAPTER 6

Study 4	128
Acute Physiological Responses to Moderate-Load	Resistance
Exercise in Systemic Hypoxia	128
Abstract	129
Introduction	130

Methods	132
Results	137
Discussion	143
Conclusions	148
Practical Applications	149

CHAPTER 7

Study 5	150
Resistance Exercise in Hypoxia does not Affect Markers of P	Physical
Performance, Training Stress or Neuromuscular Recovery	150
Abstract	151
Introduction	152
Methods	154
Results	161
Discussion	169
Conclusions	173
Practical Applications	173

CHAPTER 8

General Discussion	175
Overview of Thesis	176
Reliability of Methods to Monitor Muscle during Resistance Exerc	ise 177
Physical Performance and Neuromuscular Recovery during Hy	/poxic
Resistance Training	178
Physiological Responses to Resistance Exercise in Hypoxia	180
Perceptual Responses to Resistance Exercise in Hypoxia	183
Conclusions	184

CHAPTER 9

Summary and Practical Applications	185
Summary of the Major Findings	186
Practical Applications	188
Recommendations for Future Research	189

CHAPTER 10

References	1
------------	---

CHAPTER 11

Appendices	230
Appendix A	231
Information Statement (Study 1)	231

Appendix B	236
Consent Form (Study 1)	236
Appendix C	239
Information Statement (Study 2-5)	239
Appendix D	245
Consent Form (Study 2-5)	245
Appendix E	248
Expedited Approval (Study 2-5)	248
Appendix F	250
Pre-Exercise Health Screening Questionnaire	250
Appendix G	252
Intermittent Hypoxic Resistance Training: Does it Provide Ad	ded
Benefit?	252
Introduction	253
Findings from Intermittent Hypoxic Resistance Training Studies	254
Level of Hypoxia	255
Metabolic Stress	257
Conclusions	260
Appendix H	262
Intermittent Hypoxic Resistance Training: Is Metabolic Stress	the
Key Moderator?	262
Abstract	263
Introduction	264
Conflicting Results of Intermittent Hypoxic Resistance Training Stu	dies 266
Effects of Inter-Set Rest Periods on Energetic Metabolism	268
Hypoxia-Mediated Challenges for Energetic Metabolism	270
Anabolic Effects of Metabolic Stress	272
Considerations for Training Programs	276
Conclusions	278

List of Figures

Figure 2.1. Simplified schematic of the proposed interplay between potential mechanisms that may mediate the adaptive responses to BFR training and IHRT
Figure 3.1. Example of a subject performing the harness back squat exercise, highlighting the squat position at the end of the eccentric/beginning of the concentric phase (A), and at the end of the concentric phase (B)
Figure 3.2. Placement positions the NIRS device on the right <i>vastus lateralis</i> (1), and EMG electrodes on the left <i>vastus lateralis</i> (2), <i>vastus medialis</i> (3), <i>gluteus maximus</i> (4) and <i>biceps femoris</i> (5) from an anterior (A) and posterior (B) view
Figure 3.3. Example of the accelerometry trace from the VL electrode and typical raw EMG traces from the <i>gluteus maximus</i> (GM), <i>biceps femoris</i> (BF), <i>vastus lateralis</i> (VL) and <i>vastus medialis</i> (VM) muscles during three repetitions of the harness back squat exercise
Figure 3.4. The ICC and CV of RMS, MDF and iEMG data between identical repeated sets of harness back squat exercise within a single testing session from the (A) <i>gluteus maximus</i> , (B) <i>biceps femoris</i> , (C) <i>vastus lateralis</i> and (D) <i>vastus medialis</i> muscles
Figure 3.5. The ICC and CV of RMS, MDF and iEMG data between identical matched sets of harness back squat exercise in separate testing sessions from the (A) <i>gluteus maximus</i> , (B) <i>biceps femoris</i> , (C) <i>vastus lateralis</i> and (D) <i>vastus medialis</i> muscles
Figure 3.6. The ICC and CV of HbO ₂ (%), HHb (%) and TSI (%) data between identical repeated sets of harness back squat within a single testing session from the <i>vastus lateralis</i>
Figure 3.7. The ICC and CV of HbO ₂ (%), HHb (%) and TSI (%) data between identical matched sets of harness back squat in separate testing sessions from the <i>vastus lateralis</i> .
Figure 4.1. Pooled data for (A) peak and (C) mean force as well as (B) peak and (D) mean power during the concentric phase of each repetition across five sets of the back squat
Figure 4.2. Pooled data for (A) peak and (C) mean force as well as (B) peak and (D) mean power during the concentric phase of each repetition across five sets of the deadlift

Figure 4.3. Percentage change in concentric force and power from the first to the fifth set of the back squat (A and C) and the deadlift (B and D) in NORM, MH and HH
Figure 4.4. Pooled data for SpO ₂ , HR and RPE immediately following each set of 5 repetitions for the back squat and deadlift exercises
Figure 5.1. Mean relative values for minimum HbO ₂ (A and B) and maximum HHb (C and D), during high-load back squat exercise (A and C) and deadlift exercise (B and D)
Figure 5.2. Blood lactate (BLa ⁻) concentrations and pH levels prior to exercise, and following the final sets of back squat and deadlift exercises 118
Figure 5.3. Blood oxygen saturation (sO ₂) and partial pressure of oxygen (PO ₂) prior to exercise, and following the final sets of back squats and deadlifts
Figure 5.4. Mean iEMG during the concentric phase of the back squat (A-D) and deadlift (E-G) exercises in normoxia (NORM), moderate-level hypoxia (MH) and high-level hypoxia (HH) conditions
Figure 5.5. Physical fatigue and muscle soreness scores prior to and for up to 40 minutes (fatigue) or 24 h (soreness) post-exercise
Figure 6.1. Blood lactate (BLa ⁻) concentrations expressed relative to pre- exercise values immediately following the final set of back squats and deadlifts
Figure 6.2. Arterial oxygen saturation (SpO ₂) and heart rate (HR) immediately following each set of back squats and deadlifts
Figure 6.3. Mean integrated electromyography (iEMG) values during the back squat for the <i>gluteus maximus</i> (GM; A), <i>biceps femoris</i> (BF; B), <i>vastus lateralis</i> (VL; C) and <i>vastus medialis</i> (VM; D)
Figure 6.4. Mean integrated electromyography (iEMG) values during the deadlift for the <i>gluteus maximus</i> (GM; A), <i>biceps femoris</i> (BF; B) and <i>vastus lateralis</i> (VL; C)
Figure 6.5. Mean relative values for minimum HbO ₂ (A and B) and maximum HHb (C and D), during back squat (A and C) and deadlift (B and D) exercise
Figure 7.1. Isometric mid-thigh pull using a customised power rack and force platform
Figure 7.2. Mean concentric velocity (A and B) and power (C and D) for repetitions 1-10 during the back squat (A and C) and deadlift (B and D) 163

Figure 7.4. Perceived levels of physical fatigue and muscle soreness prior to and following experimental trials measured via visual analogue scales. 165

List of Tables

Table 2.1. Summary of the current understanding of physiologicalresponses to resistance exercise with BFR, and factors influencing themagnitude of these responses.33
Table 2.2. Summary of research examining the acute responses toresistance exercise with systemic hypoxia
Table 2.3. Summary of research examining the morphological and strengthresponses to resistance training programs with systemic hypoxia.40
Table 3.1. Summary of the resistance exercise protocol used during experimental trials. 66
Table 7.1. Dynamic stretching protocol used prior to assessment ofneuromuscular function
Table 7.2. Overall wellbeing scores prior to exercise and at 24 and 48 hfollowing trials
Table 9.1. Summary of the investigations conducted as part of this thesis 187
Table 10.1. Summary of research examining the morphological andstrength responses to IHRT programs.267

List of Abbreviations

~	Approximately
>	Greater than
≥	Greater than or equal to
<	Less than
≤	Less than or equal to
1	Increase
\downarrow	Decrease
\leftrightarrow	No change
?	Equivocal or unclear findings
±	Plus/minus
%	Percent
0	Degree/s
°· s ⁻¹	Degrees per second
°C	Degrees Celsius
μL	Microlitre
η^2	eta squared
Δ	Delta
1RM	1-Repetition maximum
10RM	10-Repetition maximum
ANOVA	Analysis of variance
ATP	Adenosine triphosphate
AU	Arbitrary units
BF	Biceps femoris
BFR	Blood flow restriction
BLa⁻	Blood lactate
[BLa ⁻]	Blood lactate concentration

bpm	Beats per minute
CI	Confidence intervals
cm	Centimetre
CMJ	Countermovement jump
CR-10	Category-Ratio 10 scale
CSA	Cross-sectional area
CV	Coefficient of variation
EMG	Electromyography
ES	Effect size
F	F statistic
F_1O_2	Fraction of inspired oxygen
GH	Growth hormone
GM	Gluteus maximus
h	Hour/s
H⁺	Hydrogen ion
HbO ₂	Oxyhaemoglobin
HbO _{2min}	Relative minimum oxyhaemoglobin value
[HbO ₂]	Oxyhaemoglobin concentration
HBS	Harness back squat
HH	High-level hypoxia
HHb	Deoxyhaemoglobin
HHb _{max}	Relative maximum deoxyhaemoglobin value
[HHb]	Deoxyhaemoglobin concentration
HIF-1α	Hypoxia-inducible factor-1α
HR	Heart rate
Hz	Hertz
ICC	Intra-class correlation coefficient
iEMG	Integrated electromyography

Insulin-like growth factor-1
Intermittent hypoxic resistance training
Kilogram/s
Metre/s
Mitogen-activated protein kinase
Median frequency of the electromyography signal
Moderate-level hypoxia
Minute/s
Millimetre/s
Millimetres of mercury
Millimole per litre
Muscle protein synthesis
Messenger ribonucleic acid
Metres per second
Mammalian target of rapamycin
Mid-thigh pull
Maximum voluntary contraction
Maximum voluntary contraction for 3 seconds
Maximum voluntary contraction for 30 seconds
Number
Newtons
Near-infrared spectroscopy
nanometer
Normoxia
Oxygen
Alpha
Phosphocreatine
Potential hydrogen

Pi	Inorganic phosphate
PO ₂	Partial pressure of oxygen
r	Pearson's correlation coefficient
r ²	Pearson's <i>r</i> squared
reps	Repetitions
RFD	Rate of force development
RMS	Root mean square of electromyography signal
RNA	Ribonucleic acid
ROS	Reactive oxygen species
RPE	Rating of perceived exertion
RT	Resistance training without BFR in normoxia
S	Second/s
SD	Standard deviation of the mean
SENIAM	Surface EMG for non-invasive assessment of muscles
SJ	Squat jump
sO ₂	Oxygen saturation
SpO ₂	Arterial oxygen saturation (%)
sRPE	Session rating of perceived exertion
S6K1	Ribosomal S6 kinase 1
TSI	Tissue saturation index
TSI _{min}	Relative minimum tissue saturation index
VEGF	Vascular endothelial growth factor
VL	Vastus lateralis
VM	Vastus medialis
W	Watts
W·kg⁻¹	Watts per kilogram
WU	Warm-up set
yr	Year/s

Abstract

Recent evidence suggests that supplemental hypoxia during resistance training can enhance muscular adaptation. However, the mechanisms underpinning augmented muscular responses to intermittent hypoxic resistance training (IHRT) and how they can be optimised remain largely unknown. Therefore, the aim of this thesis was to examine the acute physiological, physical and perceptual responses to IHRT in well-trained participants.

Study 1 quantified the inter- and intra-test reliability of electromyography (EMG) and near-infrared spectroscopy (NIRS) technologies during resistance exercise. Twelve well-trained young men (age: 24.8 ± 3.4 yr; height: 178.6 ± 6.0 cm; body mass: 84.8 ± 11.0 kg) performed high-load back squat exercise (12 sets at 70-90% of 1-repetition maximum [1RM]) on two occasions, with thigh muscle activation and oxygenation being monitored by EMG and NIRS, respectively. Intra-test reliability for EMG and NIRS variables was generally higher than intertest reliability. NIRS-derived measures of muscle oxygenation were generally more reliable during single-repetition sets than multiple-repetition sets at the same load. Although the reliability of EMG and NIRS varied across the exercise protocol, the biological variation during multi-joint isoinertial resistance exercise may account for the fluctuations in the observed results.

Study 2 aimed to determine whether different levels of hypoxia affect physical performance during high-load resistance exercise. Using a randomised single

XXI

blind cross-over design, 12 resistance-trained males (age: 25.3 ± 4.3 yr; height: 179.0 ± 4.5 cm; body mass: 83.4 ± 9.1 kg) completed three trials of 5 x 5 repetitions of back squats and deadlifts at 80% 1RM with 180 s inter-set rest. Trials took place in normoxia (NORM; fraction of inspired oxygen [F₁O₂] = 21%), moderate-level hypoxia (MH; F₁O₂ = 16%), and high-level hypoxia (HH; F₁O₂ = 13%). Physical performance was monitored during repetitions (force and power variables), and arterial oxygen saturation (SpO₂), heart rate (HR), and a rating of perceived exertion (RPE) were obtained following each set. No differences in performance were evident between conditions. HR was higher following sets in HH than NORM (p = 0.009), while SpO₂ was lower in hypoxic conditions than in NORM (p < 0.001). There were no differences in RPE between conditions. These findings suggest that physical performance and perceived effort during high-load resistance exercise is not affected by supplemental hypoxia.

Study 3 assessed whether hypoxia during high-load resistance exercise could enhance the acute responses thought to underpin IHRT adaptation. Twelve well-trained males (age: 25.3 ± 4.3 yr; height: 179.0 ± 4.5 cm; body mass: 83.4 ± 9.1 kg) performed the same high-load resistance exercise protocol described for Study 2 in NORM, MH and HH. Muscle oxygenation and activation were monitored via NIRS and EMG, respectively. Blood lactate (BLa⁻) concentration and pH levels were assessed to quantify metabolic stress. Perceived fatigue and soreness were also quantified following the exercise. HH appeared to cause the lowest levels of muscle oxygenation during exercise, though significant differences between conditions were only observed for maximal

XXII

Abstract

deoxyhaemoglobin in the deadlift (p = 0.009). Metabolic stress increased from baseline following exercise ($p \le 0.004$), however there were no consistent between-condition differences. Muscle activation, perceived fatigue and soreness also did not differ between conditions. These data suggest that highload IHRT may not provide added benefit over the equivalent normoxic training, possibly because of its inherent design with long inter-set rest periods.

Study 4 assessed whether moderate-load IHRT with short rest periods could augment acute anabolic responses. Using a randomised single blind cross-over design, 14 well-trained male subjects (age: 24.6 ± 2.7 yr; height: 179.7 ± 5.9 cm; body mass: 84.6 ± 11.6 kg) performed resistance exercise trials in NORM and MH (3 x 10 repetitions of back squats and deadlifts at 60% 1RM with 60 s rest). SpO₂ and HR were assessed following each set, and BLa⁻ concentration was quantified after each exercise. Thigh circumference was measured as a marker of muscle swelling. Muscle activation and oxygenation were monitored via EMG and NIRS, respectively. Relative BLa⁻ concentrations were significantly higher following both squats (p = 0.041) and deadlifts (p = 0.002) in MH than NORM. SpO₂ was lower following each set in MH (p < 0.001), though there were no between-condition differences for HR or thigh circumference. Integrated EMG was higher in the MH trial at several time points for the back squat (p < 0.001), but not the deadlift. Muscle oxygenation did not differ between conditions. These data demonstrate that hypoxia during moderate-load resistance exercise with brief rest periods between sets can enhance metabolic stress in concert with increased muscle activation.

Abstract

Lastly, Study 5 aimed to determine whether hypoxia can affect markers of physical performance, training stress and neuromuscular recovery during moderate-load resistance exercise. Fourteen well-trained male subjects (age: 24.6 ± 2.7 yr; height: 179.7 ± 5.9 cm; body mass: 84.6 ± 11.6 kg) performed the same moderate-load resistance exercise protocol as for Study 4 in NORM and MH. Physical performance was quantified during repetitions (velocity and power). Perceived exertion, fatigue, soreness and wellbeing were assessed during and following exercise. Neuromuscular performance was monitored using vertical jump and isometric mid-thigh pull (MTP) tasks for up to 48 h following exercise. Performance declined across sets ($p \le 0.010$), though this was not different between conditions. Perceptual responses were also not different between conditions. Jump height and MTP peak force were decreased from pre-exercise values immediately after all trials ($p \le 0.026$), but returned to pre-exercise values at 24 h. Despite increases in metabolic stress and muscle activation (Study 4), physical performance and markers of training stress were not impacted by hypoxia during moderate-load resistance exercise.

This collective work has highlighted the importance of structuring exercise using sufficient repetition volume and brief inter-set rest periods to elicit hypoxiamediated benefits. Moderate-load IHRT with short rest in hypoxia was shown to enhance metabolic stress and muscle activation, which may maximise adaptation to resistance training. Importantly, supplementary hypoxia did not affect markers of training stress or recovery of neuromuscular function, making this an attractive strategy for already well-trained individuals.

XXIV